AI Run Tool Documentation

Welcome to the official documentation for the Rendora AI Run Tool. This tool allows you to easily manage and execute AI workloads on Rendora's GPU infrastructure.

Table of Contents

Introduction

The Rendora AI Run Tool is a command-line interface (CLI) that simplifies the process of running AI models and scripts on Rendora's cloud GPU resources. It provides features for:

Installation

You can install the Rendora AI Run Tool using pip:

pip install rendora-ai-run-tool

Make sure you have Python 3.7+ installed on your system.

Configuration

Before using the tool, you need to configure your Rendora API key. You can set it as an environment variable:

export RENDORA_API_KEY="YOUR_API_KEY"

Alternatively, you can configure it in the `config.yaml` file located in your home directory (`~/.rendora/config.yaml`).

Usage

Running Python Scripts

To run a Python script, use the `run` command:

rendora run --script my_script.py --gpu rtx4090 --data data.csv

Available options:

  • `--script`: Path to the Python script.
  • `--gpu`: Type of GPU to use (e.g., rtx4090, h100).
  • `--data`: Path to the data file.
  • `--cpu`: Number of CPU cores to allocate (optional).
  • `--memory`: Memory to allocate in GB (optional).

Managing Data

You can upload data to Rendora using the `upload` command:

rendora upload --file my_data.csv

Uploaded data is stored in your Rendora storage and can be accessed by your scripts.

Monitoring Jobs

You can monitor the status of your jobs using the `status` command:

rendora status --job_id JOB_ID

This will display real-time information about your job's progress, resource utilization, and any errors that may occur.

Fine-Tuning Models

Fine-tuning allows you to adapt a pre-trained model to a specific dataset, improving its performance on a particular task.

To fine-tune a model, use the `finetune` command:

rendora finetune --script finetune.py --base_model pretrained_model.pth --dataset new_data.csv --learning_rate 0.0001

Available options:

  • `--script`: Path to the fine-tuning script.
  • `--base_model`: Path or name of the pre-trained model.
  • `--dataset`: Path to the dataset used for fine-tuning.
  • `--learning_rate`: Learning rate for the fine-tuning process.

Using Different AI Frameworks

The Rendora AI Run Tool supports a variety of AI frameworks, including PyTorch and TensorFlow. Ensure your scripts are compatible with the chosen framework.

PyTorch Example


    import torch
    import torch.nn as nn
    import torch.optim as optim
    from torch.utils.data import DataLoader, Dataset

    # (Define your model, dataset, and training loop here)
    # Model = YourModel()
    # DataLoader =  YourDataLoader()
    # Optimizer = YourOptimizer()
    # LossFn  = YourLossFunction()

    # Dummy Variables
    class Model(nn.Module):
        def __init__(self) -> None:
            super().__init__()
    class Dataset(Dataset):
        def __init__(self, *args, **kwargs) -> None:
            super().__init__(*args, **kwargs)
        def __len__(self):
            return 0
        def __getitem__(self, idx):
            return 0
    Model = Model()
    train_loader = DataLoader(Dataset(), batch_size=1)
    Optimizer = optim.Adam(Model.parameters(), lr=1e-3)
    LossFn = nn.MSELoss()
    def training_loop(model, train_loader, Optimizer, LossFn):
        size = len(train_loader.dataset)
        for batch, X in enumerate(train_loader):
            Optimizer.zero_grad()
            preds = Model(X)
            loss = LossFn(preds, torch.rand_like(preds))
            loss.backward()
            Optimizer.step()

            if batch % 100 == 0:
                loss, current = loss.item(), (batch + 1)*len(X)
                print(f'loss: {loss:.4f} [{current:>5d}/{size:>5d}')
    training_loop(Model, train_loader, Optimizer, LossFn)
    print("PyTorch training complete!")
        
rendora run --script train_pytorch.py --gpu rtx4090

TensorFlow Example


    import tensorflow as tf
    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import Dense

    # Define a simple sequential model
    model = Sequential([
        Dense(128, activation='relu', input_shape=(784,)),  # Example input shape
        Dense(10, activation='softmax')  # 10 output classes for a classification task
    ])

    # Compile the model
    model.compile(optimizer='adam',
                loss='categorical_crossentropy',
                metrics=['accuracy'])

    # Example data (replace with your actual data loading)
    (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()  # MNIST dataset

    # Preprocess the data
    x_train = x_train.reshape(60000, 784).astype('float32') / 255.0
    x_test = x_test.reshape(10000, 784).astype('float32') / 255.0
    y_train = tf.keras.utils.to_categorical(y_train, num_classes=10)
    y_test = tf.keras.utils.to_categorical(y_test, num_classes=10)

    # Train the model
    model.fit(x_train, y_train, epochs=2, batch_size=32)  # Train for 2 epochs with a batch size of 32

    # Evaluate the model
    loss, accuracy = model.evaluate(x_test, y_test)
    print('Test accuracy:', accuracy)
                
rendora run --script train_tensorflow.py --gpu rtx4090

Remember to install the required dependencies (e.g., `torch`, `tensorflow`) before running your scripts:

pip install torch tensorflow

Model Lineage Tracking

The Rendora AI Run Tool allows you to track the lineage of your models, making it easier to reproduce experiments and manage model versions.

To enable model lineage tracking, configure the following settings in `config.yaml`:


            lineage_tracking:
            enabled: true
            metadata_store: "your_metadata_store_url"
        

Here's how to use the tool to run a model training script with specific metadata, to be tracked:


    import rendora_ai_run

    try:
        job_id = rendora_ai_run.run(
            script="train_model.py",
            gpu_type="rtx4090",
            data="training_data.csv",
            environment={"NUM_EPOCHS": "100"}, # Example environment variable
            metadata={"model_type": "CNN", "dataset_version": "v1.2", "notes": "Experiment with dropout"}
        )
        print(f"Job submitted successfully. Job ID: {job_id}")
    except Exception as e:
        print(f"Error submitting job: {e}")
        

Best Practices for Model Management

Examples

Here are some examples of how to use the Rendora AI Run Tool for common tasks.

Running a Script on a Specific GPU

rendora run --script my_script.py --gpu rtx4090

Running a Fine-Tuning job and storing to a datastore

rendora run --script train_model.py --gpu rtx4090 \
        --data training_data.csv \
        --cpu 4 \
        --memory 8 \
        --environment NUM_EPOCHS=100 LEARNING_RATE=0.001 \
        --metadata model_type=CNN dataset_version=v1.2 notes="Experiment with dropout"
        

Troubleshooting

This section provides solutions to common problems you may encounter while using the Rendora AI Run Tool.

API Reference

This section provides a detailed reference to the Rendora AI Run Tool API. This is more detail about all attributes and how to track models and what it can do.

FAQ

Frequently asked questions about the Rendora AI Run Tool.

Ready to Begin?
Getting started with Rendora is fast and straightforward. Set up your cloud account now and immediately start utilizing powerful GPUs to accelerate your projects. Whether you're looking for short-term rentals or require a dedicated contract with access to thousands of GPUs for large-scale initiatives, we have the perfect solution for you.
  • Rendora Global Inc.
  • McLaughlin Crescent, 7 Arno Quay
  • Kentucky, Stuartville 4776
  • New Zealand

© 2025 All rights reserved.